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Abstract
Fraud poses a pervasive challenge across diverse domains. Cur-

rently, many types of fraud are managed in part by automated

detection algorithms that operate over graph-structured data. We

consider a scenario where a data holder wishes to outsource the

development of fraud detection algorithms to third parties (e.g.,

vendors or researchers) on a private graph-structured dataset. The

third parties submit their fraud detectors to the data holder, who

evaluates these algorithms on the private dataset. The evaluation

results are then communicated publicly. We study how to evaluate

and release these benchmarking results while satisfying a formal

differential privacy (DP) guarantee. DP evaluation of fraud detec-

tion algorithms over graph data has not been explicitly studied

in the literature, so we empirically evaluate two classes of solu-

tions: subsample-and-aggregate and DP synthetic graph data. We

demonstrate through extensive empirical experiments that current

approaches fail to provide utility when formally guaranteeing pri-

vacy. Our results indicate that the error arising from differential

privacy trades off between bias from distorting graph structure and

variance from adding random noise. Current methods lie on dif-

ferent points along this bias-variance trade-off, but more complex

methods tend to require high-variance noise addition, undermining

utility. Hence, the most competitive baseline is surprisingly simple:

it models the underlying graph as a stochastic block model, esti-

mates the parameters with DP, and then evaluates fraud detectors

on a synthetic graph drawn from this learned generative model.

Keywords
differential privacy, graph analysis, model evaluation, synthetic

data, fraud detection

1 Introduction
Fraud constitutes a pernicious and widespread problem across nu-

merous domains, manifesting as fake product reviews, fraudulent

payments, and the resale of stolen goods, among other harms [6].

The scale of fraud losses is driven in part by the difficulty of detect-

ing fraud: today, the problem is primarily handled by automated
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detectors with high false positive and false negative rates. Although

many organizations dedicate entire teams to fraud detection, other

organizations partially (or entirely) outsource the development of

fraud detection mechanisms to third parties, such as vendors of

fraud detection software and/or third-party researchers [7, 25, 39].

However, effective outsourcing requires enterprises to share inter-

nal fraud data, which can be challenging or impossible due to pri-

vacy regulations (e.g., GDPR) and/or the risk of leaking trade secrets

through shared datasets. As a result, the lack of publicly shareable

data has limited research progress on detection of fraudulent behav-

iors in privacy-sensitive domains. For example, in scientific peer

review, there is a lack of data on reviewer-paper assignments. This

unavailability limits researchers’ ability to evaluate the efficacy of

potential solutions to the problem of detecting rings of colluding

reviewers [28, 41].

In this work, we explore a paradigm for outsourcing fraud detec-

tion in which the data does not leave an organization’s boundaries.

Instead, third-parties submit fraud detection algorithms based on

existing techniques—including domain knowledge, public sources

of data, and synthetic data—which are evaluated and ranked by

the data holder. These third parties may be motivated by financial

and/or reputational rewards for the winning algorithms and devel-

opers, based on a leaderboard—a model that has seen significant

success in the machine learning community [19]. We study this

setting under two key constraints that (together) have not been

explored in the literature:

(1) Private algorithm evaluation: We observe that if the accuracy of

a fraud detector is released directly, it can leak sensitive infor-

mation about the underlying test data (Section 2). We therefore

consider methods for evaluating algorithms, and releasing their

results, under a differential privacy (DP) constraint [9].

(2) Graph-structured data: Many prominent fraud domains, such as

financial fraud or product review fraud, have graph-structured

datasets. We focus on fraud detection algorithms (and privacy

solutions) that can be applied to graph-structured data.

Existing techniques for privately evaluating fraud-detection al-

gorithms cannot be easily applied to graph-structured data (Section

2.2). The main challenge is that existing fraud detection algorithms

for graph-structured data rely on queries over the graph with a

high global sensitivity, meaning that the query result can change

significantly if even a single node’s neighbors are altered in the

graph (Definition 2.2). When such high-sensitivity algorithms are

combined with existing DP mechanisms, large amounts of noise
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Figure 1: Comparison of DP benchmarking methods for releasing the best AUC score among 10 fraud detectors with privacy
budget of 𝜀 = 5.0. The horizontal axis captures error due to inductive bias (i.e. the underlying graph model, without DP noise);
the vertical axis captures error including DP noise. More complex synthetic data methods (Topmfilter and AGM) can model the
data well on some datasets without privacy, but suffer from high variance due to noise addition required to satisfy DP, thus
undermining utility. Subsample-and-aggregate tends to distort graph structure extensively, even before adding random noise
to outputs. All current methods to satisfy DP on graph data incur large utility cost compared to tabular data. Error bars show
the standard error of the mean across 10 simulations of each method.

are required (scaling proportionally to the global sensitivity), thus

destroying the utility of the query.

The goal of this work is to instantiate and benchmark different

classes of techniques for evaluating fraud detection algorithms over

graph-structured data under a differential privacy constraint. Specif-

ically, we evaluate two categories of techniques for dealing with

high-sensitivity queries: (1) Subsample-and-aggregate partitions the
dataset into multiple non-overlapping datasets, then evaluates the

fraud detection algorithm over each partition. The average accu-

racy over the partitions is low-sensitivity, and can be released with

less noise than without partitioning. (2) Synthetic graph data in-

volves generating a DP synthetic copy of the true graph; then, fraud

detection algorithms can be evaluated on this synthetic graph.

In this work, we provide an extensive empirical evaluation of

these two categories of approaches for privately evaluating fraud

detectors on graph data. We outline the challenges associated with

using them, recommendations for when to use which algorithm,

and open problems. Our primary contributions are:

(1) We formulate the problem of differentially private benchmarking
of fraud detectors on private graph data. We identify challenges

unique to graph data that make the model evaluation problem

more difficult on graph data than on tabular (non-graph) data.

We provide a quantitative and qualitative head-to-head com-

parison between two frameworks for this problem—subsample-

and-aggregate and synthetic graph algorithms.

(2) Across methods,we observe a severe trade-off between bias
introduced by distorting the graph and noise required to
compensate for computing high sensitivity statistics on
the graph. This result is captured in Figure 1, which shows

the error in privately benchmarking the best AUC score among

a set of 10 fraud detectors on two fraud datasets. We plot the

error of each DP benchmarking method without noise added

(inductive bias) on the x-axis against error after adding noise to

ensure differential privacy on the y-axis. Among synthetic data

methods, more complex methods (TopmFilter and AGM) have

lower inductive bias, but much higher noise addition to pre-

serve privacy than the simpler SBM. Subsample-and-aggregate

tends to distort graph structure extensively, even before adding

random noise to outputs. All current methods to satisfy DP on

graph data incur large utility cost compared to tabular data,

where it is possible to simultaneously achieve low noise and

unbiased estimates.

(3) To explain these results, we conduct detailed ablations on both

subsample-and aggregate and synthetic data methods. While

these methods introduce inductive bias in very different ways,

we find that both exhibit a similar trade-off—the less we bias

our graph representation, the more noise we must add to satisfy

DP. We propose a variant of subsample-and-aggregate for fraud

graphs where benign and fraudulent vertices are sub-sampled at

different rates, which can improve utility at the cost of a weaker

privacy guarantee (Section 4). Our extensive empirical analyses

suggest that it is helpful to use far fewer partitions than we

might expect from applications of subsample-and-aggregate to

tabular data (under 50 partitions for 𝜀 = 0.5, compared to over

100 partitions in prior work [31, 34]).

2 Problem Formulation
We consider a benchmarking server, which has a private graph 𝐺

consisting of a set of known fraudulent vertices 𝑉1 (of size 𝑛1) and

a set of benign vertices 𝑉0 (of size 𝑛0).
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The benchmarking server’s overall goal is to evaluate one or

more fraud detection algorithms, provided by third parties, and

communicate the result back to the algorithm designers. We assume

the benchmarking server receives a fraud detection algorithm A.

The fraud detection algorithm takes as input a vertex 𝑣 and the

entire graph 𝐺 and outputs A(𝐺, 𝑣) which is a numerical score

where a higher score indicates a higher likelihood of fraud. For

example, the fraud detection algorithm could score a vertex by its

degree. The benchmarking server returns an accuracy statistic for
the fraud detection algorithm on graph 𝐺 . Concretely, we consider

the AUC score, which is defined as:

𝑓AUC (A,𝐺) = 1

𝑛1𝑛0

∑︁
𝑣0∈𝑉0

∑︁
𝑣1∈𝑉1

1[A(𝐺, 𝑣1) > A(𝐺, 𝑣0)] .

The AUC score represents the probability that a randomly chosen

fraudulent vertex is scored higher than a randomly chosen benign

vertex. It is a commonly used accuracy statistic for class-imbalanced

binary classification problems like fraud detection [12].

We consider three different operating modes for the benchmark-

ing server: (1) one-shot: the benchmarking server releases the AUC

score for a single submitted fraud detector, (2) full leaderboard:
the benchmarking server returns the AUC score for of a set of

submitted fraud detectors, and (3) top-1 release: the benchmarking

server releases the best-performing fraud detector among a set of

submitted algorithms.

An example attack. We next show how a malicious actor can

compromise the privacy of any individual in the system, even with

only a single benchmarking query. Consider a bad actor who wishes

to ask whether there exists an edge between two specific vertices

in the graph. The adversary needs three capabilities. (1) An accurate
fraud detector: for example, a known algorithm from the literature

which does better than random (AUC > 0.5). (2) An inaccurate
fraud detector: for example, scoring vertices at random (expected

AUC = 0.5). (3) The ability to identify vertices in 𝐺 : this depends on
what information the private server gives to the fraud detection

algorithm. In many cases, 𝐺 may include extensive metadata per

vertex, which makes it easy to identify vertices. Even without meta-

data, there are many de-anonymization attacks leveraging only the

graph structure (see [17] for a survey), which enable an adversary

to identify vertices.

The adversary can identify the relevant pair of vertices, and

then run the accurate fraud detector if an edge exists between the

vertices or the inaccurate fraud detector otherwise. If the adversary

observes a high AUC score, they learn that an edge exists, while

if they observe a low AUC score they learn that the edge does not

exist. In effect, the benchmarking server allows a malicious actor

to answer any binary query on 𝐺 by encoding the answer to their

query as either a high-accuracy or low-accuracy fraud detector.

2.1 Incorporating Differential Privacy
Motivated by this privacy risk, we propose incorporating differen-

tial privacy (DP) [9] into the fraud benchmarking server. Specifically,

we want the server to guarantee a relaxation of DP, which promises

differential privacy only for benign vertices:

Definition 2.1 (Protected differential privacy [23]). Two graphs

𝐺 , 𝐺 ′
are neighboring if:

(a) 𝐺 and 𝐺 ′
share the same partitions of fraudulent and non-

fraudulent vertices 𝑉1 and 𝑉0.

(b) 𝐺 can be obtained from 𝐺 ′
by rewiring the edges of one

benign vertex and/or changing that vertices’ metadata.

Let 𝑓 denote the benchmarking server that given a graph and fraud

detector outputs an estimate of the AUC score. The server 𝑓 satisfies

𝜀-protected differential privacy if for any two neighboring graphs

𝐺,𝐺 ′
, any fraud detection algorithm A and any possible set of

outputs O:

Pr[𝑓 (𝐺,A) ∈ O] ≤ 𝑒𝜀Pr[𝑓 (𝐺 ′,A) ∈ O] .

Standard DP allows𝐺 and𝐺 ′
to differ in the data of any vertex in

the graph, not just a benign vertex. Protected DP is a relaxation of

standard DP in that any graphs that are neighbors per the definition

of protected DP are also neighbors under standard DP. We will refer

to protected differential privacy as DP for brevity throughout.

We primarily adopt this relaxed notion of privacy to improve

utility. In many real-world graphs, the rate of fraud is low. Hence,

requiring that the released accuracy statistic does not change much

if we change the connections of these fraudulent vertices makes it

difficult to release high-fidelity benchmarks. Still, we believe this

relaxation is useful. In fraud detection, it is natural to hold different

privacy expectations for fraudulent participants (many of which

may even be fake [15]) compared to legitimate ones.

In the definition of neighboring graphs, we adopt the strong

notion of node differential privacy, which protects all of the edges

of any single benign vertex. Many prior works employ a weaker

notion of edge differential privacy [4, 18, 21, 32], which defines

neighboring graphs as graphs that differ in a single edge. We note

that protected DP inherits the composition property of standard DP:

Theorem 2.1 (Composition [9]). For any two fraud detectorsA1

and A2, if releasing 𝑓 (A1,𝐺) satisfies 𝜀1-protected DP and releasing
𝑓 (A2,𝐺) satisfies 𝜀2-protected DP, then releasing both results on
graph 𝐺 , (𝑓 (A1,𝐺), 𝑓 (A2,𝐺)) satisfies (𝜀1 + 𝜀2)-DP.

This property is helpful in moving from one-shot release of fraud

detectors to releasing a leaderboard of many fraud detectors.

2.2 Challenges of Graph Data
Even evaluating a single fraud detector on graph data proves chal-

lenging under DP constraints. To understand why, let us compare

our setting to evaluating a fraud detector on tabular data. Evaluat-

ing a single fraud detector can be seen as a problem of releasing

a (noisy) query result. A simple mechanism that solves the query

release problem adds random noise with variance scaled to the

“sensitivity” of this query, which is defined as follows.

Definition 2.2 (Global Sensitivity). For a query 𝑓 : X → R𝑑 ,
define its global sensitivity

Δ𝑓 = max

𝐺,𝐺 ′
neighbors

∥ 𝑓 (𝐺) − 𝑓 (𝐺 ′)∥1

as the worst-case change in 𝑓 across any two neighboring graphs.

Then, a canonical mechanism, termed the Laplace Mechanism,

scales noise to the global sensitivity:

3
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Definition 2.3 (Laplace Mechanism [9]). On any input 𝐺 the

Laplace Mechanism with privacy parameter 𝜀 releases

𝑓 (𝐺) = 𝑓 (𝐺) + Laplace(Δ𝑓 /𝜀) .
The Laplace Mechanism satisfies 𝜀-DP.

In the tabular setting, model evaluation is a low sensitivity query

and therefore can be released by directly applying the Laplace

mechanism. Consider a simple case where fraud detector A is a

fitted logistic regression model (the weights of the model are fixed).

Changing any row of a tabular dataset only changes the features

of that row and hence changes at most a single fraud prediction

score. Therefore, when evaluating the fixed model on tabular data,

the AUC score can only change by
1

𝑛0

. The Laplace mechanism can

then release the true AUC score of the fraud detector plus Laplace

noise with variance
2

(𝜀𝑛0 )2 .
In contrast, consider evaluating the logistic regression model on

a graph where features of each vertex include graph statistics like

the degree of each vertex. Because features of each vertex depend

on other vertices, changing any one vertex can change features of

all other vertices in the graph. In the worst-case, changing a vertex

changes fraud prediction scores for all other vertices in the graph,

so the AUC score has a large global sensitivity of 1. As this is the

largest possible value AUC can take, the Laplace mechanism must

add so much noise that the entire signal is lost.

In this paper, we focus on addressing this challenge of high sen-

sitivity of model evaluation on graph data. In cases where queries

of a dataset have large worst-case sensitivity there are three classes

of solutions in the DP literature:

(1) (Subsample-and-aggregate) Force low sensitivity of the AUC

score by applying “subsample-and-aggregate.”

(2) (Synthetic data) Generate DP synthetic data that captures some

structure of the private graph and run fraud benchmarking on

this private graph data.

(3) (Calibrate noise to “local sensitivity.” ) Estimate (an upper bound)

on how sensitive 𝑓AUC is on the specific graph and fraud detec-

tion algorithm A and calibrate noise to this sensitivity, which

may be much lower than the worst case global sensitivity.

This approach includes mechanisms like Propose-Test-Release,

Smooth Sensitivity, and the Inverse Sensitivity Mechanism

[10, 33] as well as recent work on privatizing black-box scripts

run on private data [24].

In this work, we give instantiations of subsample-and-aggregate

and synthetic data generation algorithms tailored to the bench-

marking server setting and run extensive empirical evaluations to

understand opportunities and shortcomings. We do not evaluate

local sensitivity based methods [33], because these approaches are

computationally infeasible in our setting as they would require enu-

merating every possible neighboring graphs and evaluating fraud

detectors on these graphs to estimate a bound on local sensitivity.

3 Related Work
To our knowledge, this work is the first to consider the problem

of model evaluation on graph data under differential privacy con-

straints. For tabular (non-graph) data, there are two lines of work

that consider DP model evaluation. One line of work [2, 38, 45]

proposes a framework of “verification servers” wherein analysts

fit a model of data (e.g., a linear regression model) on a synthetic

dataset and then employ a “verification server” which holds non-

synthetic data to perform quality checks that their model is useful

like goodness-of-fit tests. While the system design of our work is

similar, these works focus on tabular data rather than graph data,

which poses specific challenges as we detail in Section 2.2.

A recent line of work in DP machine learning (starting with [30]

and extended in [5, 36]), looks at a closely related problem of model

selection under differential privacy constraints. These works focus

on choosing the (nearly) optimal model in minimizing loss among

a large set of models without paying for privacy loss that grows

with the number of models. In our work, we observe that on graphs

(even ignoring model training) the seemingly straightforward step

of one-shot model evaluation is difficult under differential privacy

constraints.

A number of works have considered the problem of running

arbitrary queries on private data. Subsample-and-aggregate, first

proposed in [33], is one popular method for reducing the sensitiv-

ity of a query. Practical instantiations of subsample-and-aggregate

have been used in popular frameworks for data analysis as in GUPT

[31] and for training ML models as in PATE [35]. In our work, we

focus on model evaluation rather than training, as the model evalu-

ation task is quite challenging in the graph setting. In contrast, to

prior uses of subsample-and-aggregate, we propose up-sampling

fraudulent entities satisfying a relaxed notion of privacy and im-

proving utility. We then perform extensive empirical evaluation

to understand how the subsample-and-aggregate framework com-

pares to synthetic data generation algorithms for this problem. A

recent work [24] also considers the problem of running arbitrary

code on a private dataset and gives a newmechanism called TAHOE

that is competitive with subsample-and-aggregate in some tabular

data settings, but TAHOE is computationally expensive and and

cannot run efficiently on graph data.

There is a long and rich line of work in differentially private

analysis of graph data. We discuss the literature on generating syn-

thetic graphs in more detail in Section 5 where we detail our choice

of synthetic graph algorithms to benchmark. These synthetic graph

algorithms require estimating statistics of the graph (like degree

distribution or number of triangles) under node differential privacy.

This introduces new challenges as the prior works on synthetic

data generation use the weaker notion of edge-DP to estimate sta-

tistics. In our work, we generically transform edge-DP estimation

into (reasonably accurate) node-DP estimation using the idea of

smoothly projecting a graph to the space of limited-degree graphs

from [3, 22]. There may be additional improvements in applying

existing synthetic data generation methods under the node-DP pri-

vacy regime by applying more tailored estimation procedures for

specific graph statistics.

4 Subsample-and-Aggregate
The first approach we consider in privatizing fraud benchmarking

is the subsample-and-aggregate framework [33]. Recall from Sec-

tion 2.2 that a key challenge of releasing a DP estimate of the AUC

score of a fraud detector on a graph is that this query has global

sensitivity of 1, equal to the range of the AUC score. Subsample-and-

aggregate forces low sensitivity of the query by first partitioning

4
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the dataset into 𝑘 disjoint sets and then estimating AUC on each

partition.

Our algorithm follows the template described above for benign

vertices, that is, we partition the benign vertices into 𝑘 disjoint sets

of equal size. However, in fraud graphs, there are often very few

fraudulent vertices. For example, in the Elliptic Bitcoin financial

fraud dataset [42] there are only 11 fraudsters out of over 6, 000

vertices. Partitioning these fraud vertices into a reasonable number

of partitions to achieve low sensitivity (say 𝑘 ≥ 5) would destroy

any structure of the sub-graph of fraud vertices.

We therefore modify typical subsample-and-aggregate for the

fraudulent vertices by allowing duplication of fraudsters across

partitions. For each partition, we sample a subset of fraudulent

vertices, where the rate of sub-sampling is controlled by a parameter

𝜌 . We term this instance of subsample-and-aggregate as Partition,

Duplicate, and Aggregate (PDA), described in Algorithm 1. Note

that taking 𝜌 = 1 results in duplicating all fraud vertices in each

partition, while taking 𝜌 = 1

𝑘
is similar to typical subsample-and-

aggregate, but with the difference that fraudulent vertices may be

sampled into multiple partitions.

Algorithm 1 Partition, Duplicate, and Aggregate

Parameters: privacy parameter 𝜀 > 0, number of partitions 𝑘 ,

fraud sub-sampling rate 𝜌 .

Inputs: fraud detector A, accuracy statistic 𝑓 with global

sensitivity Δ, fraud vertices 𝑉1, benign vertices 𝑉0, graph 𝐺 on

vertex set 𝑉0 ∪𝑉1.

• Randomly partition non-fraud nodes 𝑉1 into 𝑘 equally size sets

𝑉
(1)
0

, . . . ,𝑉
(𝑘 )
0

.

• Randomly sample 𝑘 sets of fraud nodes 𝑉
(1)
1

, . . . ,𝑉
(𝑘 )
1

where

each 𝑉
(𝑖 )
1

is sampled independently uniformly from all sub-sets

of 𝑉1 of size 𝜌 · |𝑉1 |.
• Let 𝐺1, · · · ,𝐺𝑘 be sub-graphs of 𝐺 on vertices (𝑉 (1)

0
∪

𝑉
(1)
1

), . . . , (𝑉 (𝑘 )
0

∪𝑉
(𝑘 )
1

).
• Release 𝑍 + 1

𝑘

∑𝑘
𝑖=1 𝑓 (A,𝐺𝑖 ) where 𝑍 ∼ Laplace(Δ/(𝑘𝜀)).

It is straightforward to prove that Algorithm 1 guarantees differ-

ential privacy:

Proposition 4.1. For any choice of sub-sampling rate 𝜌 ∈ (0, 1),
number of partitions 𝑘 > 1 and privacy parameter 𝜀 > 0, Algorithm 1
guarantees 𝜀-Protected Differential Privacy (Definition 2.1).

The proof follows from a standard proof of privacy for subsample-

and-aggregate: changing the data of any benign vertex impacts at

most 1 of the 𝑘 partitions between any two neighboring graphs, and

the accuracy score on this partition can change by at most 1 since 𝑓

has global sensitivity (Definition 2.2) of 1. Hence, the mean across

partitions has global sensitivity of
1

𝑘
and privacy follows from the

Laplace mechanism (Definition 2.3). We note that in practice, the

subsample-and-aggregate framework does not introduce substan-

tial computational overhead. We further discuss the computational

costs of subsample-and-aggregate in Appendix B.2. We further

develop intuition around the error of partition, duplicate, and ag-

gregate as a function of number of partitions and subsample-rate

via a simple example in Appendix B.1.

4.1 Running Multiple Benchmarks
Algorithm 1 provides a method for one-shot release of the AUC

score of a single fraud detector. In order to apply it to full leader-

board release, we can invoke composition (Theorem 2.1) and subdi-

vide the privacy budget among many fraud detectors. For example,

if we have 10 algorithms to benchmark, we run each with privacy

budget of 𝜀/10 per fraud detector. As it is harder to provide good

utility for smaller 𝜀, we expect our accuracy of estimation to degrade

in the number of detectors benchmarked.

In many real-world settings it is useful to release only the best or

the top-𝑚 fraud detectors, for example when running a competition.

In the case of top-1 release, we can use the Report Noisy Arg Max
mechanism [11]. This mechanism adds Laplace noise to any (finite)

number of queries as per the Laplace mechanism, but then only

releases the name of the query with the largest (noisy) value. Rather

than paying composition cost that grows in the number of queries,

this procedure is 𝜀-DP. In our case, then, we can apply Algorithm 1

to arbitrarily many fraud detectors and then at the end only publicly

release the name of the detector with the highest noisy AUC score.

This guarantees 𝜀-DP when each run of Algorithm 1 is run using

privacy parameter 𝜀. While we do not experiment with releasing

the top-𝑚 fraud detectors, recent work [37] shows that releasing

the top-𝑚 fraud detectors ranked by noisy AUC (among a larger

set of fraud detectors) only incurs total privacy loss of𝑚𝜀.

5 Synthetic Data Generation
In this section, we describe our choice of synthetic graph data gen-

eration algorithms to benchmark; the surveys [14, 27] provide a

useful overview of such algorithms. Many methods do not handle

labeled vertices. Such methods cannot be applied to our problem,

as synthetic data for fraud detection benchmarking needs to differ-

entiate between fraudulent and benign vertices. Additionally, most

existing work focuses on satisfying the weaker notion of edge-level

DP, while we wish to satisfy node-level DP. Therefore, we focus on

the following 3 methods that all handle labelled vertices and are

amenable to transformation into a node-level DP algorithm:

(1) Stochastic block model (SBM): Estimate a stochastic block model

with two communities (fraud and non-fraud) and sample a graph

based on the SBM parameters. For a fixed number of benign and

fraud vertices, the stochastic block model has three parameters

𝑝1, 𝑝0, 𝑝01. Each edge in the graph is sampled independently at

random with probability 𝑝1 if both of its endpoints are fraudu-

lent, 𝑝0 if both are benign, and 𝑝01 if one is fraudulent and the

other is benign.

(2) Attributed social graph (ASG): [18]: Estimate the connection

probabilities with and between fraud and non-fraud vertices (as

in the SBM), but additionally estimate number of triangles in

the graph and the degree sequence of the graph. Then, sample a

graph that matches these noisy statistics. We run two versions

of this method, with and without the triangle statistic.

(3) Top-m-filter [32]: Directly perturb the adjacency matrix of the

graph. In particular, flip each edge in the graph and then perform

a filtering step to remove edges to match a noisy estimate of

total number of edges.

In general, synthetic data methods first compute graph statistics

under differential privacy, which provide a succinct representation
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of the graph, and then generate the synthetic graph based on these

(noisy) statistics. More expressive graph models may better rep-

resent the graph structure, but tend to require the estimation of

noisier sufficient statistics due to differential privacy. We choose

methods that lie along this spectrum of model complexity.

Other popular synthetic data methods in the literature use expo-

nential random graph models (ERGMs) and more recently graph

neural networks (GNNs) [44, 47]. These methods are either com-

putationally intractable for large graphs in the case of ERGMs or

would require too much noise addition to sufficient statistics under

node-level privacy in the case of GNNs. We discuss these methods

in more detail in Appendix C.

Guaranteeing Node-Level Differential Privacy. The algorithms we

consider were designed to provide edge-level differential privacy.

In privately computing sufficient statistics of the graph, these algo-

rithms add Laplace noise proportional to the worst-case sensitivity

of a statistic to the change of a single edge in a graph. In order to

guarantee node-level privacy in this noise addition step, we use the

idea of projecting the graph to the space of graphs with bounded

maximum degree from [3, 22] and then adding noise proportional to

this “restricted sensitivity.” For a given graph𝐺 , choice of truncation

threshold 𝑇 , and graph statistic 𝑔 the full workflow is:

(1) (Naive truncation). Truncate graph 𝐺 by removing all vertices

with degree above 𝐷 .

(2) Estimate the “smooth sensitivity” 𝑆 of the naive truncation

operation per [22].
1

(3) Add Laplace noise with scale proportional to 𝑆 · 𝑅𝑆𝑇 (𝑔) where
𝑅𝑆𝑇 (𝑔) represents the “restricted sensitivity” of 𝑔 on graphs of

max degree 𝐷 , that is the maximum change in 𝑔 between any

two node-adjacent graphs of max degree 𝑇 .

We summarize the framework for node-private synthetic data

release in Algorithm 2. Since the max degree and average degree of

the fraud graphs used (see Table 1) tends to be much smaller than

the number of vertices in the graph, the restricted sensitivity tends

to be much lower than the global sensitivity.

Note that using this method with Laplace noise actually guar-

antees the relaxation of (𝜖, 𝛿)-differential privacy due to the use of

“smooth sensitivity” [33]. We fix 𝛿 to 10
−8

for all experiments on

synthetic data methods. Additionally, to provide a fair comparison

against our subsample and aggregate method which relaxes privacy

for fraudulent vertices, we compute statistics that rely only on the

fraudulent nodes without noise.

6 Experimental Setup
In this section, we describe the datasets, fraud detectors, andmetrics

used throughout our experiments.

6.1 Datasets
We test methods for fraud benchmarking on 4 datasets representing

a variety of domains and graph structures. All graphs are undirected

unipartite graphs. In Yelp [8] andAmazon [8] each vertex represents

1
From [22], Proposition 6.1 we can compute the smooth sensitivity 𝑆

𝛽

𝑡𝑟𝑢𝑛𝑐 (𝐺,𝑇 )
of the truncation operation as follows. Let 𝑁𝑡 (𝐺,𝑇 ) denote the number of benign

vertices with degree in range [𝑇 − 𝑡,𝑇 + 𝑡 + 1] and𝐶𝑡 (𝐺,𝑇 ) = 1 + 𝑡 + 𝑁𝑡 (𝐺,𝑇 ) .
Then, 𝑆

𝛽

𝑡𝑟𝑢𝑛𝑐 (𝐺,𝑇 ) = max𝑡≥0 𝑒−𝛽𝑡𝐶𝑡 (𝐺,𝑇 ) .

Algorithm 2 Framework for Node-Private Synthetic Data Release

Parameters: privacy parameters 𝜀 > 0, 𝛿 ∈ (0, 1), degree threshold
𝑇

Inputs: fraud vertices 𝑉1, benign vertices 𝑉0, graph 𝐺 on vertex

set 𝑉0 ∪𝑉1, vector of sufficient statistics to compute 𝑔(𝐺) with
restricted sensitivity Δ𝑇 .

• Remove all benign vertices from 𝐺 with degree greater than 𝑇 .

• Compute the 𝛽-smooth sensitivity 𝑆
𝛽
𝑡𝑟𝑢𝑛𝑐 (𝐺,𝑇 ) of the truncation

operation on 𝐺 , where 𝛽 = − 2𝜀
log(1/2𝛿 ) .

• Release 𝑔(𝐺) = 𝑔(𝐺) + 𝑍 where 𝑍 ∼ Laplace(2𝑆𝛽𝑡𝑟𝑢𝑛𝑐 (𝐺,𝑇 ) ·
Δ𝑇 /𝜀).

• Sample output synthetic graph 𝐺 based on 𝑔(𝐺).

a reviewer with edges denoting common reviews on the product-

s/restaurants and fraudulent reviewers represent spammers and

low rated reviewers respectively. Peer Review consists of paper

reviewers at a computer science conference with edges denoting

mutual bids on each other’s papers [43]. Following [15] we inject a

clique of 22 fraudulent reviewers with edge density of 0.8 among

these reviewers into the graph, which corresponds to the smallest

injected clique that was possible to detect in prior work. Finally,

in Elliptic [42] each vertex in the graph represents a transaction

from the Bitcoin blockchain, an edge represents a flow of Bitcoins

between one transaction and the other, and fraudulent nodes are

illicit transactions. We take a single time-step from the entire Ellip-

tic graph. We give summary statistics of these datasets in Table 1

in Appendix A.

We run analyses of subsample-and-aggregate and synthetic data

algorithms on validation datasets to understand settings of hyper-

parameters before comparing these methods against each other. We

use four validation datasets. For Yelp, we use random split of the

vertices with 11k vertices in the test set and 11k in the validation

set. For Elliptic, we use different disjoint time periods for validation

and test. For Amazon and Peer Review, there are not standard train-

test splits used in past work. We therefore use the entire graph for

evaluation, and generate validation graphs to set hyperparameters

by estimating parameters of a stochastic block model (SBM) and

sampling from this model.

6.2 Fraud Detectors
We benchmark 10 fraud detectors that capture a variety of graph

structures used to detect fraud. While many state of the art algo-

rithms incorporate a learning component where they learn param-

eters from data, we focus on simple approaches that do not require

learning. Since even one-shot model evaluation is challenging on

graph data (Section 2.2), this allows us to focus on the evaluation

part of the problem.

Specifically we evaluate the following fraud detectors:

• (Negative) Degree [16]: rank by the degree of each vertex (in

ascending or descending order).

• (Negative) Clustering Coefficient: rank by the clustering coefficient

of each vertex (in ascending or descending order), inspired by

[1].
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• SVD Error [16]: take the singular value decomposition of the adja-

cency matrix obtain a low rank approximation (for specified rank

𝑟 ). Then, rank each vertex by reconstruction error (aggregating

over edges by taking either the sum or the max over edges). We

use 𝑟 = 10 for the sum aggregation and 𝑟 = 50 for the max aggre-

gation, chosen to maximize average AUC across all datasets in a

grid search over choices of 𝑟 .

• Community Detection: run Leiden community detection [40] to

place each vertex in a cluster and then rank by the size of the

cluster (with larger clusters less likely to be fraudulent).

• Aggregations: take weighted averages of the (normalized) scores

or maximum scores obtained from subsets of the prior methods.

These algorithms give a wide range of AUC scores on each

dataset. For example, on Yelp, Neg Degree performs the best with

an AUC score of 0.69 and SVD Error (Sum) performs poorly with

an AUC score of 0.34. In contrast, on Peer Review, SVD Error (Sum)

performs the best with an AUC score of 0.88, while Neg Degree has

very bad performance with AUC of 0.12.

6.3 Measuring Utility
We consider three metrics to compare utility across methods. Each

metric corresponds to one of the release modes for the bench-

marking server: one-shot, full leaderboard and top-1 release. Let

{A𝑖 }𝑚𝑖=1 denote a set of𝑚 fraud detectors to benchmark on graph

𝐺 , 𝑓AUC (A𝑖 ,𝐺) denote the true AUC score for fraud detector 𝑖 on

𝐺 and
˜𝑓AUC (A𝑖 ,𝐺) denote the noisy DP estimate of the AUC score.

For the one-shot release, where we wish to release AUC for a single

fraud detector, we calculate 𝐿1 error : |𝑓AUC (A𝑖 ,𝐺) − ˜𝑓AUC (A𝑖 ,𝐺) |.
Finally, when evaluating top-1 release of only the best fraud

detector among a set of fraud detectors we measure utility by the

distance between the true AUC of the true best fraud detector

(computed without any privacy) and the true AUC of the released

best fraud detector. That is, we define top-1 error as:

𝑓AUC (A𝑡𝑜𝑝 ,𝐺) − 𝑓AUC (A𝑡𝑜𝑝′ ,𝐺) where 𝑡𝑜𝑝 = 𝜎−1 (1), 𝑡𝑜𝑝′ = 𝜎−1 (1) .

For the full leaderboard setting we use the weighted Kendall-Tau

distance between rankings [26]. We discuss this metric and provide

results in this setting in Appendix D.2.

In addition to using the AUC score as an accuracy metric, we

evaluate the F1 score of fraud detectors, another popular measure of

fraud detector accuracy.We find similar results to that of AUC score,

but F1 score tends to be even more difficult to release accurately.

We present these additional results in Appendix D.

7 Experimental Results
In this section we detail the results of our head-to-head comparison

of Subsample-and-Aggregate and Synthetic Graph Generation (7.1).

We then describe specific experiments to better understand trade-

offs between distorting graph structure and adding noise to preserve

privacy for Subsample-and-Aggregate (7.2) and Synthetic Graph

Generation (7.3) respectively.

7.1 Comparison of Algorithms
We benchmark subsample-and-aggregate against synthetic data

algorithms for the the concrete task of releasing the best fraud

detectors among a set of fraud detectors. We choose parameters of

subsample and aggregate (number of partitions and sub-sampling

rate) based on the best parameters for each dataset in releasing a

ranking of all fraud detectors on the validation dataset. This follows

prior work [31], which assumes that there exist public datasets on

which one could reasonably set hyperparameters of subsample and

aggregate.

In Figure 1, we show results of the DP benchmarking methods

for top-1 release. In order to decompose the error into inductive bias

due from how a given method distorts graph structure and error

arising from addition of privacy-preserving random noise, we plot

each method without privacy-preserving noise on the x-axis and

with noise needed to preserve privacy on the y-axis. Specifically,

for Non-Private subsample-and-aggregate we only apply the graph

partitioning and do not add Laplace noise to the AUC score. For

non-private synthetic data methods we compute sufficient statistics

for each method without any noise addition and then generate a

graph using those sufficient statistics. Among synthetic data meth-

ods, Topmfilter has no error without privacy as it releases the full

adjacency matrix, while SBM and AGM introduce error even with-

out privacy. However, after adding noise needed for privacy SBM

performs the best among synthetic data methods. Subsample-and-

aggregate distorts graph structure extensively, even with only 5

partitions, resulting in high error without privacy. We provide addi-

tional results for larger privacy budget of 𝜀 = 5.0 and other datasets

in Appendix D.1, but the general trends are similar.

7.2 Subsample-and-Aggregate
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Figure 2: Bias to the AUC score introduced by subsample
and aggregate for each fraud detector varying the fraud sub-
sample rate (𝜌) while fixing number of partitions 𝑘 = 20.
Subsample-and-aggregate introduces extensive bias to all
fraud detectors, with the sign and magnitude of the bias
varying widely across fraud detectors.

In experiments on four validation datasets, we seek to understand

how the parameters of the algorithm—number of partitions 𝑘 and

rate of sub-sampling fraud in each partition 𝜌—impact the bias,

variance from Laplace noise addition and overall distortion of fraud

detector rankings.

On each dataset we run Algorithm 1 for 10 trials for each choice

of parameters 𝑘, 𝜌 and 𝜀. We show per-dataset results on the Yelp
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Figure 3: Normalized mean absolute error (MAE) introduced to each of the synthetic graph sufficient statistics. Fixed 𝜀 = 5.0 and
degree cutoff of 1 times the graph’s max degree. It is possible to estimate SBM parameters accurately, while other parameters
have large noise addition. We give an example of what relative error of 1.84 means for the adjacency matrix on the right, where
an adjacency matrix with 50 edges has 92 edges flipped, 42 removed (yellow) and 50 added (blue.)

and Elliptic validation datasets in this section. We provide addi-

tional results on the validation datasets for Amazon and Peer Re-

view generated by modeling each of the real graphs using SBMs in

Appendix D.3.

In general, we find that partitioning the graph into random sub-

graphs introduces significant bias to estimates of graph statistics.

The sign and magnitude of this bias can differ widely across fraud

detectors. In Figure 2, we show bias per fraud detector fixing the

number of partitions at 𝑘 = 20 and varying the fraud sub-sampling

rate. We find that it is not always possible to achieve zero bias for a

given fraud detector for a given number of partitions 𝑘 = 20. For

instance, the clustering coefficient detector has negative bias on

the Yelp dataset at all values of 𝜌 . This makes sense as removing

benign vertices from the graph may change the distribution of fraud

detection scores for benign vertices such that it is not possible to

recover a similar distribution at any rate of sub-sampling fraudulent

vertices. We additionally find, as expected, that the magnitude of

bias increases with the number of partitions (𝑘) although the sign

of the bias differs across fraud detectors. We plot bias as a func-

tion of number of partitions in Figure 14 of Appendix D.3. These

results explain the poor performance of subsample-and-aggregate

in Figure 1, as subsampling tends to distort graph structure exten-

sively, biasing different fraud detectors in different ways thereby

undermining the utility of the ranking of fraud detectors.

7.3 Synthetic Graph Generation
In our experiments we aim to isolate error introduced due to choice

of graph model and noisy estimation of sufficient statistics. For each

synthetic data generation algorithm, we generate 10 synthetic data

sets. For each synthetic graph method, we subdivide the privacy

budget evenly between the different parameters to estimate. We

note that it may be possible to better distribute privacy budget

between different statistics, which is an interesting area for future

investigation. We test degree truncation thresholds as a function of

the max degree of each graph, so 1.0 is a threshold exactly equal to

the maximum degree benign vertex in a graph while 0.5 removes

all nodes with degree > 0.5 times the max degree. In this section,

we report results with threshold of 1 and give additional results for

0.5 in Appendix D.4.

We find that outside of the SBM, which has edge counts as

sufficient statistics, it is necessary to introduce large distortion to

the sufficient statistics of each graph model in order to preserve

privacy, as shown in Figure 3. On Yelp, Amazon, and Peer Review it

is possible to estimate the edge count sufficient statistics for the SBM

with high accuracy at 𝜀 = 5.0, perturbing the edge count by 1% the

total number of edges on Yelp and Amazon. Elliptic is an extremely

sparse graph (0.04%), so we introduce much larger relative error.

For degree sequence and number of triangles, the amount of error

is one to two orders of magnitude larger, with error generally at

least 50% of the value of the original statistic. Unsurprisingly, the

adjacency matrix cannot be accurately estimated under node-DP

via direct noise addition. We highlight the amount of noise addition

needed to preserve privacy in a simple example of relative error

of 1.84 on a 15x15 adjacency matrix, shown in Figure 3. Even after

aggressively truncating high-degree nodes, the addition of DP noise

results in flipping the same number of edges as were originally in

the adjacency matrix. This large distortion of sufficient statistics

explains the poor accuracy of AGM and TopMfilter (which require

estimates of the degree sequence + triangles and the adjacency

matrix respectively.)

8 Discussion
In this work we define the novel problem of privately benchmarking

fraud detectors on graph-structured data. We benchmark two pop-

ular frameworks from the DP literature, subsample-and-aggregate

and synthetic data generation on this problem. We characterize a

trade-off for each method between error arising from bias due to dis-

torting graph structure and error arising from privacy-preserving

noise addition. Generally, our results suggest the need to develop

methods that trade-off more effectively between graph distortion

and noise addition. There are a number of open directions inmoving

towards the goal of deploying synthetic graph data methods:

(1) Model / hyper-parameter selection under privacy constraints: our
experiments suggest that choice of hyperparameters (e.g., num-

ber of partitions in subsample-and-aggregate) and more gener-

ally choice of method can have a large impact on utility raising

important problem of how to choose the model and hyper-

parameters privately.
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(2) General vs. tailored methods of synthetic graph generation: there
are not existing DP synthetic graph algorithms specifically tai-

lored to fraud detection. In our experiments, we find that ex-

isting methods introduced significant bias even without noisy

sufficient statistics, suggesting that these models do not cap-

ture relevant structure of graphs needed to model fraudulent

behavior.

(3) Modeling synthetic graph meta-data: existing synthetic graph

methods tend to focus on modeling graph structure. This pre-

cludes practical application of these methods for settings with

rich meta-data, which characterizes many real-world fraud

graphs. Additionally, we hypothesize that modelling graph

meta-data can lead to more effective DP synthetic graph gener-

ation methods as meta-data may be easier to model under DP

constraints.
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A Summary of Datasets

Yelp Amazon Peer Review Elliptic

Vertices 11,473 11,944 2,483 6,621

Edge Density (%) 0.41 6.17 0.77 0.04

Num Fraud 1,657 821 22 11

Max Degree 236 6,991 255 47

Mean Degree 47.45 736.50 19.12 2.51

Table 1: Graph test datasets

B Discussion of Subsample-and-Aggregate
B.1 Controlling Bias and Variance
Algorithm 1 introduces error to the outputted AUC in three ways.

First, sub-sampling the graph may introduce bias to the AUC score

estimated on each partition; that is, E[𝑓AUC (𝐺𝑖 ) − 𝑓AUC (𝐺)] ≠ 0.

Second, the algorithm adds Laplace noise to the released statistic,

with variance proportional to the inverse of the number of partitions

𝑘 . Finally, estimating on sub-samples of the data may increase the

variance of the estimate.

Tabular data. In the special case of benchmarking a fraud detec-

tor using tabular data (e.g., only using vertex metadata not graph

structure) with full duplication of fraudulent vertices (𝜌 = 1), Al-

gorithm 1 introduces error only from noise addition. In particular,

changing the value of any one row in a dataset does not change

properties of other rows of the dataset. Therefore, on tabular data,

partitioning does not change the fraud scores of individual data-

points compared to running the fraud detector on the entire dataset.

Then from the definition of the AUC score, the AUC score of sub-

partition 𝑖 is

𝑓AUC (A,𝐺𝑖 ) =
𝑘

𝑛1𝑛0

∑︁
𝑣0∈𝑉 (𝑖 )

0

∑︁
𝑣1∈𝑉1

1[A(𝐺, 𝑣1) > A(𝐺, 𝑣0)]

where 𝑉
(𝑖 )
1

= 𝑉1 since we duplicate all fraud vertices in each

partition. Then, the mean over all partitions is:

1

𝑘

𝑘∑︁
𝑖=1

𝑓AUC (A,𝐺𝑖 )

=
1

𝑛1𝑛0

∑︁
𝑣0∈𝑉0

∑︁
𝑣1∈𝑉1

1[A(𝐺, 𝑣1) > A(𝐺, 𝑣0)] = 𝑓AUC (A,𝐺)

so the mean AUC over partitions exactly recovers the AUC score

evaluated on the whole graph. In fact, taking 𝑘 = 𝑛0 we add Laplace

noise with scale proportional to
1

𝑛0

in the aggregation step, ex-

actly recovering the Laplace mechanism for a query with global

sensitivity of
1

𝑛0

.

Graph data. For graph data, partitioning can introduce bias to

the estimate of AUC of each partition. The magnitude and direction

of the bias may depend on the combination of graph and fraud

detector under evaluation. We show this by way of a stylized exam-

ple. Consider a fraud detector A which scores each vertex in the

graph by its degree. Let graph 𝐺 be a random sample from a very

simple stochastic block model (SBM) [13]. The SBM is defined as

follows: fix a number of fraudulent vertices 𝑛1 and benign vertices

𝑛0. Then for each pair of fraudulent vertices in the graph, sample

an edge between the two independently at random with probability

𝑝1. For each pair of benign vertices, sample an edge between the

two vertices i.i.d. with probability 𝑝0. Letting the random variable

𝐷 be the difference in degree between a random fraudulent vertex

and a benign vertex, we are concerned with the expected AUC

score of a graph sampled from the SBM model, which is exactly

E[1[𝐷 > 0]] = Pr[𝐷 > 0].
The expected difference between degree of a fraud vertex and

degree of a benign vertex is

E[𝐷] = (𝑛1 − 1)𝑝1 − (𝑛0 − 1)𝑝0
while its standard deviation is given by

SD[𝐷] =
√︁
(𝑛1 − 1)𝑝1 (1 − 𝑝1) + (𝑛0 − 1)𝑝0 (1 − 𝑝0)

For large 𝑛1𝑝1 and 𝑛0𝑝0, 𝐷 can be approximated by a Normal

distribution so we can estimate the expected AUC score as

Pr[𝐷 > 0] ≈ Pr

[
𝑍 > − E[𝐷]

SD[𝐷]

]
where𝑍 is a standard normal randomvariable. Suppose that 𝑝1 > 𝑝0
and E[𝐷] > 0, so ranking by a degree is a good estimator in that

Pr[𝐷 > 0] > 0.5. Now, consider what happens to expected AUC

score of a sub-partition, where fraud and benign vertices are sub-

sampled at the same rate (𝜌 = 1

𝑘
). In this case, E[𝐷] decreases by

a factor of roughly
1

𝑘
while SD[𝐷] decreases by a factor of

1√
𝑘
so
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− E[𝐷 ]
SD[𝐷 ] gets larger, negatively biasing the AUC score downwards.

In contrast, consider setting 𝜌 = 1 so all fraud vertices are duplicated.

In this case, E[𝐷] actually increases since we have only down-

sampled benign vertices, while the variance decreases, so − E[𝐷 ]
SD[𝐷 ]

decreases putting upward bias on the AUC score.
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Figure 4: Comparison of the bias in sub-graph AUC score
of the “rank by degree” detector as a function of fraud sub-
sampling rate 𝜌 fixing 𝑘 = 20. Results are for two simulated
SBM models on 1, 000 benign and 100 fraud vertices. The bias-
minimizing choice of parameter is between 1/𝑘 and 1, but
quite different on the two datasets.

In theory, then, we would like to choose a sub-sampling rate

somewhere between
1

𝑘
and 1 to minimize this bias. Unfortunately, it

is unclear how to set this sub-sampling rate in general. For example,

in Figure 4, we show simulations for simple SBM models on 1, 000

benign and 100 fraud vertices where Model 1 has 𝑛0𝑝0 = 5, 𝑛1𝑝1 =

10, while Model 2 has 𝑛0𝑝0 = 9, 𝑛1𝑝1 = 10. In both cases, we can

observe that taking 𝜌 = 1.0 leads to positive bias while 𝜌 = 1/𝑘
leads to negative bias. However, the two differ in optimal choice of

subsample rate. For Model 1, the best subsample rate for 0 bias is

roughly 0.3, which gives large positive bias on Model 2. Meanwhile,

for Model 2, the best subsample rate for 0 bias is around 0.1, which

gives significant negative bias on Model 2. It is unclear how to

choose the error-minimizing parameters as privately estimating the

error in AUC requires estimating the AUC, the original estimation

problem. In prior work on subsample-and-aggregate building a

system named GUPT, the authors advocate for choosing parameters

of subsample-and-aggregate based on older (now) public data that

is similar to the private dataset [31]. However, such data may be

difficult to find in the fraud setting. In our work, we empirically

evaluate error as a function of 𝑘 , 𝜌 , and 𝜀 on validation datasets

in Section 7.2 and then use the best choice of parameters on test

datasets for comparison against synthetic data methods.

B.2 Runtime
We observe in experiments that subsample-and-aggregate often

significantly speeds up evaluation of fraud detectors. In this ap-

pendix, we give some theoretical intuition for why this may be.

Algorithm 1 requires running the same fraud detector on 𝑘 parti-

tions of the dataset, each of size roughly
1

𝑘
the original number of

vertices in the dataset (in fact, slightly larger due to duplication

of fraud vertices). In many cases, the runtime of a fraud detector

actually decreases by a factor of more than
1

𝑘
per partition. This

can happen for two reasons. First, many graph algorithms are poly-

nomial in the number of vertices in the graph (for example, an

algorithm that cubes the adjacency matrix to compute number of

triangles per vertex). Hence, the partitioning gives a polynomial
1

𝑘
improvement in total computational cost. Second, partitioning can

only decrease the total number of edges across all partitions since

no edge can be duplicated in multiple partitions. Therefore, any

algorithm with runtime dependent on number of edges is faster

when run on all the partitioned graphs rather than the original

graph. In addition, Algorithm 1 can be parallelized by running the

fraud detector on each partition separately, which may make it

easier for the benchmarking server to efficiently execute submitted

fraud detectors in practice.

C Other Synthetic Graph Algorithms
We briefly discuss other popular synthetic graph models considered

in the literature. One approach uses exponential random graph

models (ERGMs) to model vertex-labelled graph data [20, 29]. These

methods are difficult to scale to graphs of more than a few hundred

vertices, and prior empirical evaluations are limited to graphs of

this size. Hence, they are not applicable to the types of fraud graphs

we consider which are larger by an order of magnitude. Recent

work [44, 47] has considered using Graph Neural Networks (GNNs)

to generate synthetic graph data from graph statistics. They find

that directly using DP-SGD (stochastic gradient descent) to train

the GNN leads to poor utility. However, it is possible to obtain

useful synthetic data by computing vectors of vertex-level graph

statistics (like histograms of triangles and 2-paths) under edge-level

DP. Estimating these sub-graph histogram statistics under node-
level DP requires much larger noise addition. For instance, even

assuming that a graph has no vertices of degree greater than 𝑇 ,

the triangle histogram has sensitivity of greater than 𝑇 2
, while

we would expect most vertices to participate in far fewer than 𝑇

triangles. Because we would need to add much more noise, than the

experiments from this work (which just add noise scaled to
1

𝜀 to the

statistics) we do not focus on these methods in this work. Finally,

some methods incorporate a community detection step [4, 46] that

first clusters vertices of the graph and then estimates connection

probability parameters between these clusters to incorporate into

the graph generativemodel. It is unclear how tomake this clustering

step satisfy node-level DP with reasonable utility.

D Additional Results
In this section we present additional results of our empirical exper-

iments.

D.1 Comparison of Algorithms, Top-1 Release
In this section, we provide additional results for the comparison

of all algorithms at top-1 release as measured by the error in AUC

score of the released best fraud detector vs. the actual best fraud

detector. First, in Figures 5 and 6, we show the same plot as Figure 1

for the Elliptic and Peer Review datasets. We generally observe a

similar trend of increasingly complex methods performing worse

afer private noise addition than simpler methods. Interestingly, on

Elliptic, subsample and aggregate works well with 𝜀 = 5.0. We note

that Elliptic is much sparser than the other graphs, so it may admit

different effective algorithms.
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Figure 5: Top-1 AUC, 𝜀 = 5.0 on Elliptic Data
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Figure 6: Top-1 AUC, 𝜀 = 5.0 on Peer Review Data
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Figure 7: Top-1 AUC, 𝜀 = 2.0 on Amazon Data

In Figures 7, 8, 9, and 10, we give results for the stricter privacy

budget of 𝜀 = 2.0.
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Figure 8: Top-1 AUC error, 𝜀 = 2.0 on Yelp Data
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Figure 9: Top-1 AUC error, 𝜀 = 2.0 on Elliptic Data
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Figure 10: Top-1 AUC error, 𝜀 = 2.0 on Peer Review Data
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Figure 11: Head-to-head comparison of DP benchmarking
methods for 𝜀 = 5 overall. Dashed lines show expected
Kendall-Tau distance of a random permutation. Error bars
show standard errors over 10 trials. SBM and subsample-
and-aggregate are the most competitive approaches, though
neither uniformly outperforms the other.

D.2 Comparison of Algorithms, Full
Leaderboard

For the full leaderboard, to capture distance between the true rank-

ing of fraud detectors and the privacy-preserving noisy ranking, we

use a similarity-weighted Kendall-Tau distance [26], which counts

the number of inversions between two rankings, weighted by the

difference in true AUC scores of the swap. Precisely, let 𝜎 (𝑖) denote
the rank of fraud detectorA𝑖 in the true AUC leaderboard and 𝜎 (𝑖)
denote the rank of fraud detectorA𝑖 in the noisy AUC leaderboard.

Then, the similarity weighted Kendall-Tau distance is given by:∑︁
(𝑖, 𝑗 ) :𝜎 (𝑖 )<𝜎 ( 𝑗 )

1[𝜎 (𝑖) > 𝜎 ( 𝑗)]
(
𝑓AUC (A𝑖 ,𝐺) − 𝑓AUC (A 𝑗 ,𝐺)

)
.

As a baseline value for the Kendall-Tau similarity on our set of

10 fraud detectors on each dataset, we can compute the expected

distance between the true leaderboard and a random permutation

of the fraud detectors for each dataset. This yields values in the

range of 5 to 8 for each dataset (which we show as baselines in our

results section). For further validation of the metric, we consider

the distance between rankings on validation and test sets for the

Yelp and Elliptic datasets. We find that the distance from test to

validation is 0.003 and 0.021 respectively reflecting that test and

validation sets reliably produce similar leaderboards.

In Figures 11 and 12, we show the Kendall-Tau distance on each

dataset for the best choice of parameters with privacy budgets

of 𝜀 = 5.0 and 𝜀 = 2.0 respectively. Subsample-and-aggregate is

generally less competitive at full leaderboard release than top-1

release, because it requires splitting the privacy budget across all

of the 10 fraud detectors benchmarked. In contrast, synthetic data

methods only use up privacy budget once to generate the synthetic

data and then can benchmark any number of fraud detectors with

no further privacy loss.
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Figure 12: Head-to-head comparison of DP benchmarking
methods for 𝜀 = 2 overall. Dashed lines show expected
Kendall-Tau distance of a random permutation. Error bars
show standard errors over 10 trials. SBM and subsample-
and-aggregate are the most competitive approaches, though
neither uniformly outperforms the other.
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Figure 13: Bias to the AUC score introduced by subsample
and aggregate for each fraud detector varying the fraud sub-
sample rate (𝜌) while fixing number of partitions 𝑘 = 20 for
additional datasets.

D.3 Subsample-and-Aggregate
In this section, we give additional results for subsample and aggre-

gate. First, in Figure 13, we show the bias to different fraud detectors

as a function of fraud subsampling rate for the Amazon and Peer

Review datasets (as in Figure 2 in the main text.) Then, in Figure 14,

we show the bias of each fraud detector as a function of the number

of partitions in subsample-and-aggregate. As expected, bias for

each fraud detector increases in magnitude with more partitions

(hence more graph distortion), but the sign and magnitude differ

across different fraud detectors.

D.4 Synthetic Data
In this section, we provide additional results for synthetic data

methods. In Table 2, we show the error to sufficient statistics using

13
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Figure 15: Top-1 F1 Score, 𝜀 = 5.0 on Amazon Data
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Figure 16: Top-1 F1 Score, 𝜀 = 5.0 on Yelp Data
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Figure 17: Top-1 F1 Score, 𝜀 = 5.0 on Elliptic Data
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Figure 18: Top-1 F1 Score, 𝜀 = 5.0 on Peer Review Data

Figure 14: Bias to the AUC score introduced by subsample
and aggregate for each fraud detector varying the number of
partitions (𝑘) while fixing fraud sub-sampling rate of 𝜌 = 0.5.
(Absolute) bias increases with 𝑘 , but magnitude and sign of
the bias varies per fraud detector and dataset.

a more aggressive degree truncation threshold of 0.5 times the max

degree, compared to 1.0 times the max degree in Figure 3 in the

main text. Truncating more aggressively generally increases the

error, except on Elliptic, where it decreases the error due to Elliptic

being a highly sparse graph.

D.5 F1 Score
In this section, we give additional results using the F1 Score to

benchmark fraud detectors instead of the AUC score. The F1 Score is

the harmonic mean of the precision and recall of a classifier and has

range [0, 1]. As it depends on a threshold chosen to convert a fraud

detection score into a fraud/benign label, for each fraud detector

we compute the F1 score as the best F1 score across all possible

14



Benchmarking Fraud Detectors on Private Data Conference’17 ()

# Edges Degree Sequence # Triangles Adjacency Matrix

Yelp 0.45 0.78 1.00 1.50

Elliptic 17.61 25.64 25.13 1.91

Amazon (SBM) 0.99 0.66 0.96 1.00

Peer Review (SBM) 0.21 0.53 1.94 1.66

Table 2: Normalized mean absolute error (MAE) introduced to each of the synthetic graph sufficient statistics. Fixed 𝜀 = 5.0 and
degree cutoff of 0.5 the graph’s max degree.

thresholds. We show results for F1 score, analogous to Figure 1 in the main text, with 𝜀 = 5.0 for all datasets in Figures 15,16,17, and

18.
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